Product Updates  

Heatmaps Are The New Hotness*

By Chris Toshok  |   Last modified on January 11, 2019

Heatmaps are a visualization that shows the statistical distribution of the values in a dataset column over time. Each column of squares in the below graph represents a histogram over roundtrip_dur, with the color mapping to the number of events where roundtrip_dur fell into that bucket and is a particularly beautiful example, IMO:

rainbow-colored heatmap

Using them in the UI is easy. They’re just another calculation available in the dropdown:

gif of how to generate a heatmap

Heatmaps look best when you have a lot of events to visualize, and where the spread of values is wide enough to see some differentiation, but not complete noise. Basically any column you might run a percentile or average calculation on could likely benefit from being rendered as a heatmap. Say, anything representing a duration or size.

The Rollover

The rollover for heatmaps is different than for the normal line and stacked graphs:

time bucket for heatmaps

“This time bucket” shows you what the histogram is for the column under the time bar. You can see those outliers represented as small bumps on the right hand side of the histogram (from about 0.8k and 1.0k.)

“Entire time range” shows you the merged histogram for all data within the time range displayed in the graph. Note the difference in y-axes, and the smoother shape for “Entire time range.”

Breaking down with Heatmaps

One of the most powerful features of Honeycomb is the ability to break down a calculation into groups based on values in columns. Heatmaps work well with this. Take the query below, where we’ve broken down by endpoint. By default the heatmap of all endpoints is shown (approximating what you’d see if you did the query without the breakdown.)

breaking down with a heatmap

Note that the rollover displays independent histograms for each group. This makes it especially easy to see the reason for the bimodal distribution: /account accounts for the lower of the two peaks, and /dashboard for the upper.

Just as we highlight the corresponding line in line graphs as you mouse over the summary table, we also show the heatmap corresponding to that group:

highlighting in a heatmap

You can clearly see the difference between /account and /dashboard peaks by mousing over their lines - they’re almost completely disjoint. If you watch closely, you can also see the outliers (from about 10:30 to 10:50) appear only when hovering over the line for /login.

How to make your own

Check out the documentation for heatmaps and try it for yourself!

We’ll be back with more examples, including how Honeycomb uses heatmaps soon. In the meantime, let us know how you’re using heatmaps at or @honeycombio–we’d love to know!

*Yes, we know what we did there. And we’re not sorry.


Related Posts

Product Updates   Observability  

Introducing Honeycomb for Frontend Observability: Get the Data You Need for Actionable Customer Experience Improvements

Honeycomb for Frontend Observability gives frontend developers the ability to quickly identify opportunities for optimization within their web app. This starts with better OpenTelemetry instrumentation,...

Product Updates   Observability  

Introducing Relational Fields

Expanded fields allow you to more easily find interesting traces and learn about the spans within them, saving time for debugging and enabling more curiosity...

Product Updates   Instrumentation  

Safer Client-Side Instrumentation with Honeycomb's Ingest-Only API Keys

We're delighted to introduce our new Ingest API Keys, a significant step toward enabling all Honeycomb customers to manage their observability complexity simply, efficiently, and...